## Instructions

1. Separate into groups of no more than three persons.
2. The group cannot be the same as your former group.
3. Only one submission is needed for each group.
4. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer

| Name | ID |
| :--- | :--- |
| Prapun | 555 |
|  |  |

5. Do not panic.
6. Suppose $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$. Find $P(A \cap B)$ to make $A$ and $B$ independent.

To make $A \Perp B$, we need $P(A \cap B)=P(A) P(B)$

$$
\text { Therefore, } P(A \cap B)=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6} \text {. }
$$

2. Suppose $P(C)=\frac{1}{3}$ and $P\left(D \cap C^{c}\right)=\frac{1}{6}$. Find $P(C \cap D)$ to make C and D independent. To make $C \| D$, we need $P(C \cap D)=P(C) P(D)$. Let $P(C \cap D)=o$.

$$
\begin{aligned}
x & =\frac{1}{3}\left(x+\frac{1}{6}\right) \\
3 x & =x+\frac{1}{6} \\
2 x & =\frac{1}{6}
\end{aligned}
$$



Alternatively,
we need $P\left(D \cap C^{c}\right) \stackrel{\underline{l}}{\underline{l}} P(D) P\left(C^{c}\right)$

$$
\frac{1}{6}=P(D)\left(1-\frac{1}{3}\right) \Rightarrow P(D)=\frac{1}{6} \times \frac{3}{2}=\frac{1}{4} \Rightarrow P(C \cap D)=P(D)-P\left(D \cap C^{c}\right)=\frac{1}{4}-\frac{1}{6}
$$

3. Consider a digital transmission through a binary symmetric channel with crossover probability $p=0.3=\frac{2}{24}=\frac{1}{12}$ No coding is used.
Suppose we input a sequence of three bits 101 into the channel.
a. Find the probability that we will get 100 as its output.

$$
\begin{aligned}
& \text { only the last bit is in error } \quad \text { last bit in error } \\
& \text { probability }=\underbrace{(1-p)}_{\begin{array}{c}
\text { first bit second bit } \\
\text { not in error not in error }
\end{array}} \times(\underbrace{(1-p)} \times p^{K}=(0.7)^{2} \times 0.3=0.147
\end{aligned}
$$

b. Find the probability that exactly one of the three bits is in error at the channel output.

$$
\begin{aligned}
\text { probability } & =\binom{n}{n} p^{n}(1-p)^{n-k}=\binom{3}{1} 0.3^{1} \times 0.7^{2}=3 \times 0.147 \\
& =0.441
\end{aligned}
$$

